1,475 research outputs found

    A novel family VII esterase with industrial potential from compost metagenomic library

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Among the vast microbial genomic resources now available, most microbes are unculturable in the laboratory. A culture-independent metagenomic approach is a novel technique that circumvents this culture limitation. For the screening of novel lipolytic enzymes, a metagenomic library was constructed from compost, and the clone of <it>estCS2 </it>was selected for lipolytic properties on a tributyrin-containing medium.</p> <p>Results</p> <p>The <it>estCS2 </it>sequence encodes a protein of 570 amino acid residues, with a predicted molecular mass of 63 kDa, and based on amino acid identity it most closely matches (45%) the carboxylesterase from <it>Haliangium ochraceum </it>DSM 14365. EstCS2 belong to family VII, according to the lipolytic enzyme classification proposed by Arpigny and Jaeger, and it retains the catalytic triad Ser<sub>245</sub>-Glu<sub>363</sub>-His<sub>466 </sub>that is typical of an α/β hydrolase. The Ser<sub>245 </sub>residue in the catalytic triad of EstCS2 is located in the consensus active site motif GXSXG. The EstCS2 exhibits strong activity toward <it>p</it>-nitrophenyl caproate (C6), and it is stable up to 60°C with an optimal enzymatic activity at 55°C. The maximal activity is observed at pH 9, and it remains active between pH 6-10. EstCS2 shows remarkable stability in up to 50% (v/v) dimethyl sulfoxide (DMSO) or dimethylformamide (DMF). The enzyme has the ability to cleave sterically hindered esters of tertiary alcohol, as well as to degrade polyurethanes, which are widely used in various industries.</p> <p>Conclusions</p> <p>The high stability of EstCS2 in organic solvents and its activity towards esters of ketoprofen and tertiary alcohols, and in polyurethane suggests that it has potential uses for many applications in biotransformation and bioremediation.</p

    A lab-on-a-disc platform enables serial monitoring of individual CTCs associated with tumor progression during EGFR-targeted therapy for patients with NSCLC

    Get PDF
    Rationale: Unlike traditional biopsy, liquid biopsy, which is a largely non-invasive diagnostic and monitoring tool, can be performed more frequently to better track tumors and mutations over time and to validate the efficiency of a cancer treatment. Circulating tumor cells (CTCs) are considered promising liquid biopsy biomarkers; however, their use in clinical settings is limited by high costs and a low throughput of standard platforms for CTC enumeration and analysis. In this study, we used a label-free, high-throughput method for CTC isolation directly from whole blood of patients using a standalone, clinical setting-friendly platform. Methods: A CTC-based liquid biopsy approach was used to examine the efficacy of therapy and emergent drug resistance via longitudinal monitoring of CTC counts, DNA mutations, and single-cell-level gene expression in a prospective cohort of 40 patients with epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer. Results: The change ratio of the CTC counts was associated with tumor response, detected by CT scan, while the baseline CTC counts did not show association with progression-free survival or overall survival. We achieved a 100% concordance rate for the detection of EGFR mutation, including emergence of T790M, between tumor tissue and CTCs. More importantly, our data revealed the importance of the analysis of the epithelial/mesenchymal signature of individual pretreatment CTCs to predict drug responsiveness in patients. Conclusion: The fluid-assisted separation technology disc platform enables serial monitoring of CTC counts, DNA mutations, as well as unbiased molecular characterization of individual CTCs associated with tumor progression during targeted therapy

    Dimensions of Segmental Variability: Interaction of Prosody and Surprisal in Six Languages

    Get PDF
    Contextual predictability variation affects phonological and phonetic structure. Reduction and expansion of acoustic-phonetic features is also characteristic of prosodic variability. In this study, we assess the impact of surprisal and prosodic structure on phonetic encoding, both independently of each other and in interaction. We model segmental duration, vowel space size and spectral characteristics of vowels and consonants as a function of surprisal as well as of syllable prominence, phrase boundary, and speech rate. Correlates of phonetic encoding density are extracted from a subset of the BonnTempo corpus for six languages: American English, Czech, Finnish, French, German, and Polish. Surprisal is estimated from segmental n-gram language models trained on large text corpora. Our findings are generally compatible with a weak version of Aylett and Turk's Smooth Signal Redundancy hypothesis, suggesting that prosodic structure mediates between the requirements of efficient communication and the speech signal. However, this mediation is not perfect, as we found evidence for additional, direct effects of changes in surprisal on the phonetic structure of utterances. These effects appear to be stable across different speech rates

    A single gene of a commensal microbe affects host susceptibility to enteric infection

    Get PDF
    Indigenous microbes inside the host intestine maintain a complex self-regulating community. The mechanisms by which gut microbes interact with intestinal pathogens remain largely unknown. Here we identify a commensal Escherichia coli strain whose expansion predisposes mice to infection by Vibrio cholerae, a human pathogen. We refer to this strain as 'atypical' E. coli (atEc) because of its inability to ferment lactose. The atEc strain is resistant to reactive oxygen species (ROS) and proliferates extensively in antibiotic-treated adult mice. V. cholerae infection is more severe in neonatal mice transplanted with atEc compared with those transplanted with a typical E. coli strain. Intestinal ROS levels are decreased in atEc-transplanted mice, favouring proliferation of ROS-sensitive V. cholerae. An atEc mutant defective in ROS degradation fails to facilitate V. cholerae infection when transplanted, suggesting that host infection susceptibility can be regulated by a single gene product of one particular commensal species.

    A Neonate Diagnosed with Megalencephaly-Capillary Malformation-Polymicrogyria Syndrome with Mutation

    Get PDF
    Megalencephaly-capillary malformation-polymicrogyria syndrome (MCAP) is a rare genetic disorder characterized by megalencephaly, polymicrogyria, body overgrowth, and cutaneous capillary malformations. It has been reported recently that MCAP is related to a somatic mosaic mutation in the phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) gene. We report a case of hemimegalencephaly with polymicrogyria and cutaneous capillary malformations diagnosed by genetic evaluation of MCAP in the neonatal period. The PIK3CA mutation [c.1635G>T (p. Glu545Asp)] was determined by Sanger sequencing. The patient was treated with a ventriculoperitoneal shunt for progressive hydrocephalus. Because of the dynamic, progressive clinical manifestations and tumor-prone traits of MCAP, early diagnosis is important. Moreover, since the phosphoinositide 3-kinase (PI3K)-specific inhibitor, a targeted therapy for the PI3K/AKT/mTOR signaling pathway is emerging as a new therapy, early genetic diagnosis is becoming increasingly important

    The risk of newly diagnosed cancer in patients with rheumatoid arthritis by TNF inhibitor use: a nationwide cohort study

    Get PDF
    Background : Tumor necrosis factor (TNF) inhibitors use in patients with rheumatoid arthritis (RA) has raised safety concerns about cancer risk, but study results remain controversial. This largest nationwide study to date compared cancer risk in TNF inhibitor users to non-biologic disease-modifying anti-rheumatic drug (nbDMARD) users in Korean patients with RA. Methods : Data on all the eligible patients diagnosed with RA between 2005 and 2016 were retrieved from the Korean National Health Information Database. The one-to-one matched patients consisted of the matched cohort. The risks for developing all-type and site-specific cancers were estimated using incidence and incidence rate (IR) per 1000 person-years. Adjusted hazard ratio (HR) and 95% confidence interval (CI) were estimated using a Cox regression model. Results : Of the 22,851 patients in the before matching cohort, 4592 patients were included in the matched cohort. Treatment with TNF inhibitors was consistently associated with a lower risk of cancer than in the nbDMARD cohort (IR per 1000 person-years, 6.5 vs. 15.6; adjusted HR, 0.379; 95% CI, 0.255–0.563). The adjusted HR (95% CI) was significantly lower in the TNF inhibitor cohort than the nbDMARD cohort for gastrointestinal cancer (0.432; 0.235–0.797), breast cancer (0.146; 0.045–0.474), and genitourinary cancer (0.220; 0.059–0.820). Conclusions : The use of TNF inhibitors was not associated with an increased risk of cancer development, and rather associated with a lower cancer incidence in Korean patients with RA. Cautious interpretation is needed not to oversimplify the study results as cancer-protective effects of TNF inhibitors. A further study linking claims and clinical data is needed to confirm our results.This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HC17C0069

    miRNA regulation of cytotoxic effects in mouse Sertoli cells exposed to nonylphenol

    Get PDF
    Background: It is known that some environmental chemicals affect the human endocrine system. The harmful effects of endocrine disrupting chemical (EDC) nonylphenol (NP) have been studied since the 1980s. It is known that NP adversely affects physiological functions by mimicking the natural hormone 17 beta-estradiol. In the present study, we analyzed the expression of miRNAs and their target genes in mouse Sertoli TM4 cells to better understand the regulatory roles of miRNAs on Sertoli cells after NP exposure. Methods: Mouse TM4 Sertoli cells were treated with NP for 3 or 24 h, and global gene and miRNA expression were analyzed using Agilent mouse whole genome and mouse miRNA v13 arrays. Results: We identified genes that were &gt; 2-fold differentially expressed in NP-treated cells and control cells (P &lt; 0.05) and analyzed their functions through Gene Ontology analysis. We also identified miRNAs that were differentially expressed in NP-treated and control cells. Of the 186 miRNAs the expression of which differed between NP-treated and control cells, 59 and 147 miRNAs exhibited 1.3-fold increased or decreased expression at 3 and 24 h, respectively. Network analysis of deregulated miRNAs suggested that Ppara may regulate the expression of certain miRNAs, including miR-378, miR-125a-3p miR-20a, miR-203, and miR-101a, after exposure to NP. Additionally, comprehensive analysis of predicted target genes for miRNAs showed that the expression of genes with roles in cell proliferation, the cell cycle, and cell death were regulated by miRNA in NP-treated TM4 cells. Levels of expression of the miRNAs miR-135a* and miR-199a-5p were validated by qRT-PCR. Finally, miR-135a* target gene analysis suggests that the generation of reactive oxygen species (ROS) following exposure to NP exposure may be mediated by miR-135a* through regulation of the Wnt/beta-catenin signaling pathway. Conclusions: Collectively, these data help to determine NP&#39;s actions on mouse TM4 Sertoli cells and increase our understanding of the molecular mechanisms underlying the adverse effects of xenoestrogens on the reproductive system.This work was supported an Eco-Technopia 21 project grant from the Ministry of Environment (Development of Decision Method of Chromosomal Abnormality in Reproductive System by Toxic Substances at the Korea Institute of Toxicology)

    Guided bone regeneration with beta-tricalcium phosphate and poly L-lactide-co-glycolide-co-epsilon-caprolactone membrane in partial defects of canine humerus

    Get PDF
    This study was performed to evaluate the effect of beta-tricalcium phosphate and poly L-lactide-co-glycolide-co-epsilon-caprolactone (TCP/PLGC) membrane in the repair of partial bone defects in canine proximal humerus. Three adult mixed-breed dogs were used during the experimental period. The length of the defect was quarter of the full length of humerus, and width of the defect was quarter of middle diameter of the lateral aspect of humerus. The humeri of each dog were divided into treatment (TCP/PLGC) and control groups. The defect was covered with TCP/PLGC membrane in treatment group. To evaluate regeneration of the bone, computerized tomography (CT) and histopathologic examination were performed. The radiopaque lines were appeared at the original defect sites in TCP/PLGC group but below the original site in control at 4th week. Radiopacity and thickness of the defect sites, and radiopaque lines were more increased at 8th week than those of 4th week. Histopathologic findings revealed fibrous connective tissue migration into the defect and the migration inhibited the structure of new cortex to be placed in the original level in control whereas new cortex growth was found in the level of original line in TCP/PLGC group. However, the new cortical bone in the TCP/PLGC group was thinner and less organized than the adjacent intact cortex, and the amount of new cancellous bones were also scanty. The result suggested that TCP/PLGC membrane is a good guided bone regeneration material to restore the original morphology of humerus in partial defect

    Identification of Novel Reference Genes Using Multiplatform Expression Data and Their Validation for Quantitative Gene Expression Analysis

    Get PDF
    Normalization of mRNA levels using endogenous reference genes (ERGs) is critical for an accurate comparison of gene expression between different samples. Despite the popularity of traditional ERGs (tERGs) such as GAPDH and ACTB, their expression variability in different tissues or disease status has been reported. Here, we first selected candidate housekeeping genes (HKGs) using human gene expression data from different platforms including EST, SAGE, and microarray, and 13 novel ERGs (nERGs) (ARL8B, CTBP1, CUL1, DIMT1L, FBXW2, GPBP1, LUC7L2, OAZ1, PAPOLA, SPG21, TRIM27, UBQLN1, ZNF207) were further identified from these HKGs. The mean coefficient variation (CV) values of nERGs were significantly lower than those of tERGs and the expression level of most nERGs was relatively lower than high expressing tERGs in all dataset. The higher expression stability and lower expression levels of most nERGs were validated in 108 human samples including formalin-fixed paraffin-embedded (FFPE) tissues, frozen tissues and cell lines, through quantitative real-time RT-PCR (qRT-PCR). Furthermore, the optimal number of nERGs required for accurate normalization was as few as two, while four genes were required when using tERGs in FFPE tissues. Most nERGs identified in this study should be better reference genes than tERGs, based on their higher expression stability and fewer numbers needed for normalization when multiple ERGs are required

    Protective Role of Psoralea corylifolia

    Get PDF
    The accumulation of oxidative damage and mitochondrial dysfunction is an important factor that contributes to aging. The Psoralea corylifolia seeds (PCS), commonly known as “Boh-Gol-Zhee” in Korea, have been used traditionally as a medicinal remedy. We investigated whether an extract of PCS has protective effects on oxidative stress and mitochondrial function in hepatocytes. The PCS extract showed an antisenescence effect on human diploid fibroblasts as evidenced by a decreased expression of p16INK4a mRNA and senescence-associated β-galactosidase staining. PCS extract treatment reduced H2O2-induced reactive oxygen species (ROS) production in HepG2 cells, inhibited ROS production in hepatocytes of aged mice, and increased superoxide dismutase activity. In H2O2-treated HepG2 cells, PCS extract treatment recovered ATP production. PCS extract treatment recovered the oxygen consumption rate and inhibited reduction of mitochondrial membrane potential induced by oxidative stress, suggesting improvement of mitochondrial function. In addition, PCS extract treatment recovered peroxisome proliferator-activated receptor γ coactivator 1α and carnitine palmitoyltransferase 1 mRNA and protein expression, and inhibited mitochondrial genome damage. Treatment with the major component of PCS extract, bakuchiol, also recovered mitochondrial dysfunction. On the basis of these results, we conclude that PCS extract inhibits ROS production and mitochondrial dysfunction induced by oxidative stress in hepatocytes
    corecore